

Análises de tamanho e potencial zeta — Zetasizer Nano ZS90

LAMATE

Proposto por: Analisado por: Francisco L. S. Bustamante

or: Aprovado por: Célia M. Ronconi

1. OBJETIVO

Descrever o procedimento a ser adotado para realização de análises de <u>tamanho de partículas</u> e de <u>potencial zeta</u> no equipamento Malvern Zetasizer Nano ZS90 localizado no laboratório 104 no prédio da Física Velha, Campus Valonguinho.

2. DEFINIÇÕES E ABREVIATURAS

Tabela 1 Termos e siglas

TERMO / SIGLA	OBJETO
UFF	Universidade Federal Fluminense
LAMATE	Laboratório Multiusuário de Caracterização de Materiais
DLS	Dynamic Light Scattering
Da	Dalton (unidade de massa atômica)
M3-PALS	Mixed Mode Measurement - Phase Analysis Light Scattering
SOP	Standard Operating procedure

3. REFERÊNCIAS

3.1. Documentos complementares

MALVERN. Zetasizer Nano Series User Manual. MAN0485 Issue 1.1. April 2013. MALVERN. Zetasizer Nano Series Basic Guide. MAN0486 Issue 1.0. September 2012. MALVERN. Zetasizer Nano Series Accessories Guide. MAN0487 Issue 1.1. April 2013.

4. RESPONSABILIDADES GERAIS

Tabela 2 Responsabilidades gerais

NOME	FUNÇÃO	RESPONSABILIDADE
Célia Machado Ronconi	Coordenador do laboratório	Gerenciar o laboratório
Francisco L. S. Bustamante	Químico	Manutenção periódica
Evelyn C. dos Santos	Aluna de doutorado	Manutenção na ausência do químico responsável

Código:	Data de aprovação:	Revisão:	Página 1 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 1 de 15

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE

Proposto por: Francisco L. S. Bustamante

Analisado por: A

Aprovado por: Célia M. Ronconi

5. CONDIÇÕES E DESCRIÇÕES GERAIS

Antes de começar o procedimento de medida, ligue o nobreak, o instrumento e o computador. Aguarde 30 minutos para realizar análises para que o laser estabilize. É normal que o equipamento apite algumas vezes ao inicializar. Considere o arranjo da Figura 1 como guia das principais partes do equipamento. O botão de ligar se encontra no painel traseiro do equipamento.

Figura 1 Principais partes. 1) Equipamento; 2) computador com o software do equipamento; 3) cubetas; 4) área da cubeta do equipamento; 5) botão de acesso à área da cubeta e indicador de status

5.1. Preparo da amostra

Consulte o capítulo 5 do manual do usuário do equipamento para detalhes sobre as faixas de concentração para cada tipo de medida e cuidados necessários no preparo das amostras.

5.2. Seleção e preenchimento da cubeta

Consulte o Manual de Acessórios do equipamento para a relação completa de cubetas e suas especificações. Para os procedimentos padrão descritos neste POP podem ser utilizadas as seguintes cubetas:

Tabela 3 Cubetas citadas no POP Cubeta Parâmetro Especificação Vidro – abertura quadrada com 4 faces Tipo de medida Tamanho, massa molar polidas (PCS115) Água, maior parte dos Solventes típicos solventes orgânicos e inorgânicos Qualidade ótica Excelente Volume mínimo 1 mL de amostra

Código:
POP-LAMATE-003Data de aprovação:
04/11/2014Revisão:
0Página 2 de 13

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

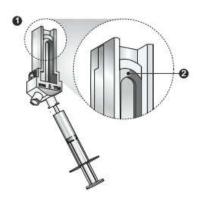
LAMATE

Proposto por: Francisco L. S. Bustamante Analisado por:

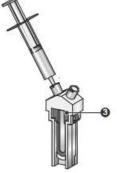
Aprovado por: Célia M. Ronconi

Policarbonato – eletrodos de berílio/cobre folheados com ouro (DTS1060)

11	


Tipo de medida	Tamanho, potencial zeta
Solventes típicos	Água, água/etanol <i>Não resistente a solventes</i>
	<u>orgânicos</u> .
Qualidade ótica	Boa a muito boa
Volume mínimo de amostra	0,75 mL

Observação: Também há uma cubeta de abertura quadrada com 4 faces de policarbonato. Esta cubeta, devido ao seu material, não é resistente a solventes orgânicos.


O preenchimento da cubeta de vidro deve ser feito inclinando-a e escorrendo lentamente a solução pela parede para evitar bolhas. Certifique-se que a cubeta está seca e limpa pelo lado de fora após inserir a amostra para evitar danos aos eletrodos do porta cubeta do equipamento. Para isso, seque-a com papel macio antes de inseri-la no equipamento.

O preenchimento da cubeta de policarbonato deve ser feito com base nos seguintes passos. Certifique-se que a cubeta e seus eletrodos estão secos e limpos pelo lado de fora após inserir a amostra para evitar danos aos eletrodos do porta cubeta do equipamento. Para isso, seque-a com papel macio antes de inseri-la no equipamento. Atenção: cubeta não resistente a solventes orgânicos.

- 1) Acople uma seringa contendo a amostra em uma das entrada da cubeta. Inverta a cubeta.
- até metade do tubo em U interno.

3) Vire a cubeta com as entradas para cima continue inserindo amostra lentamente até 2) Insira a amostra lentamente atingir o limite ilustrado acima.

4) Remova a seringa. Verifique se há bolhas sacudindo lentamente a cubeta. Coloque as tampas em cada saída. Certifique-se que uma das tampas está colocada firmemente e a outra com folga, para evitar pressão na cubeta.

Código:	Data de aprovação:	Revisão:	Página 3 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 5 de 15

Análises de tamanho e potencial zeta — Zetasizer Nano ZS90

LAMATE

Proposto por:

Analisado por:

Aprovado por:

Francisco L. S. Bustamante

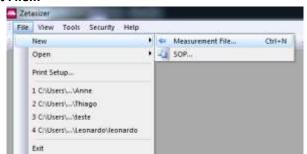
Célia M. Ronconi

Aperte o botão 5 indicado na Figura 1 para abrir o compartimento do equipamento onde a cubeta será colocada.

No caso da cubeta de policarbonato, há um lado preferencial da cubeta. Neste lado há a presença de uma linha no topo da cubeta, conforme indicado na figura ao lado. Este lado deve estar virado para o usuário quando a cubeta for inserida no porta cubeta do instrumento.



5.3. Inicialização do software e reconhecimento das funções básicas

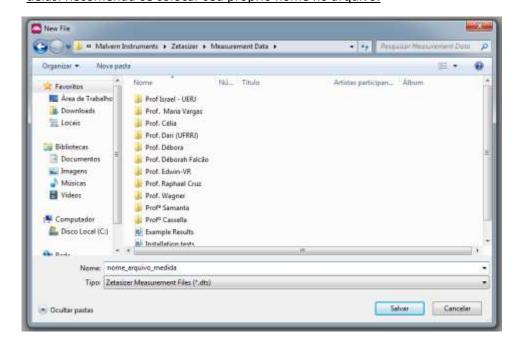

I. Ligue o equipamento antes de inicializar o software.

- II. Na área de trabalho, dê um duplo clique no ícone do equipamento Zetasizer.
- III. Aparecerá a janela inicial do software. Caso algum usuário tenha utilizado o software anteriormente e não tenha fechado seus resultados, aparecerá a janela de resultados deste usuário.

IV. Crie um arquivo onde todas as suas medidas serão guardadas. Vá em *File* > *New* > *Measurement File...*

Código:	Data de aprovação:	Revisão:	Página 4 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 4 de 15

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90


LAMATE

Proposto por: Francisco L. S. Bustamante

Analisado por:

Aprovado por: Célia M. Ronconi

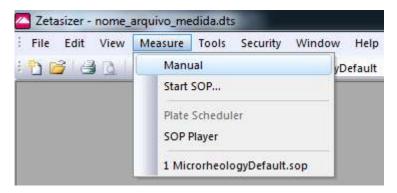
V. Caso ainda não exista, crie uma pasta para seu orientador e, dentro desta pasta, crie uma com o seu nome. Nomeie o arquivo. <u>Lembre-se de que este é o arquivo que guardará todas as suas análises que serão feitas no equipamento e não apenas uma delas.</u> Recomenda-se colocar seu próprio nome no arquivo.

VI. Aparecerá na tela a janela do arquivo de medidas. Cada nova medida que realizar aparecerá como uma linha nesta janela.

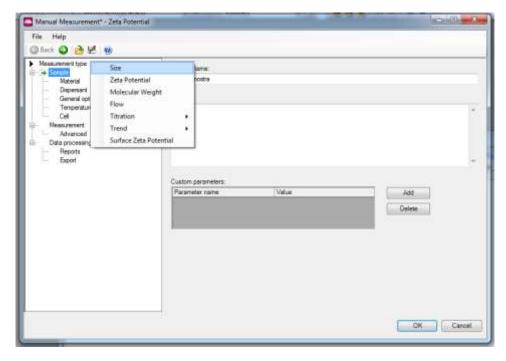
Código:	Data de aprovação:	Revisão:	Página 5 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 5 de 15

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE


Proposto por: Francisco L. S. Bustamante Analisado por:

Aprovado por: Célia M. Ronconi


Medidas manuais 5.4.

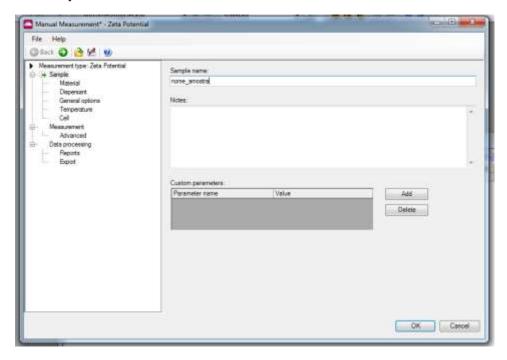
Nesse tipo de medida, todos os parâmetros são especificados antes de cada medida.

Vá em *Measure* → *Manual*

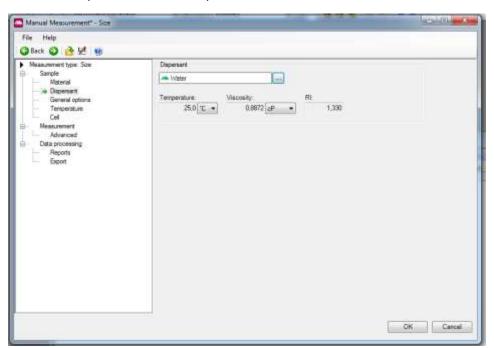
Na janela que aparece, selecione o tipo de medida que deseja realizar em Measurement II. type. Por exemplo, size para tamanho de partícula ou zeta potential para potencial zeta.

Código:	Data de aprovação:	Revisão:	Página 6 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 0 de 15

Análises de tamanho e potencial zeta — Zetasizer Nano ZS90


LAMATE

Proposto por: Francisco L. S. Bustamante


Analisado por:

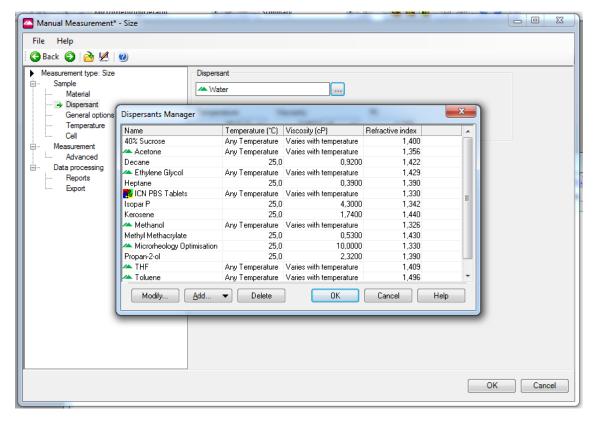
Aprovado por: Célia M. Ronconi

III. Coloque o nome de sua amostra em *Sample name*. Caso ache necessário, coloque informações relevantes em *Notes*.

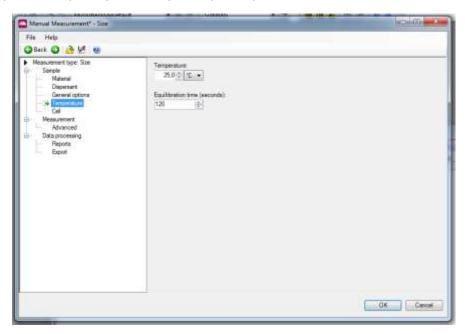
IV. No menu esquerdo selecione *Dispersant*.

Código:	Data de aprovação:	Revisão:	Página 7 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 7 de 15

Análises de tamanho e potencial zeta — Zetasizer Nano ZS90


LAMATE

Proposto por: Francisco L. S. Bustamante


Analisado por:

Aprovado por: Célia M. Ronconi

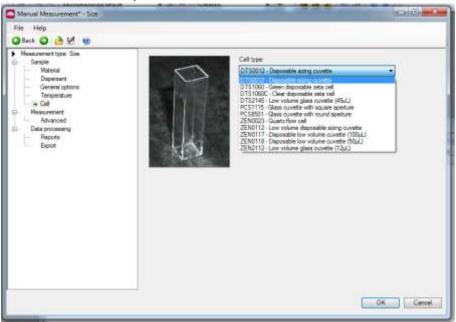
V. Clique no botão com três pontos e selecione o dispersante na janela que aparecerá. Atenção: Verifique a compatibilidade de seu dispersante com a cubeta para não danificar a mesma.

VI. Selecione *Temperature* no menu esquerdo para selecionar a temperatura de análise e quanto tempo o aparelho esperará para equilíbrio térmico antes da medida.

Código:	Data de aprovação:	Revisão:	Página 8 de 13
POP-LAMATE-003	04/11/2014	0	ragilla o de 13

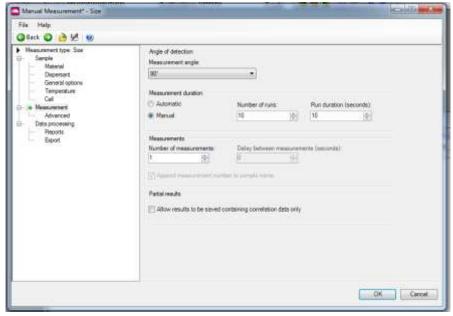
Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE


Proposto por: Francisco L. S. Bustamante

Analisado por:

Aprovado por: Célia M. Ronconi


VII. Selecione *Cell* para escolher a cubeta que será utilizada.

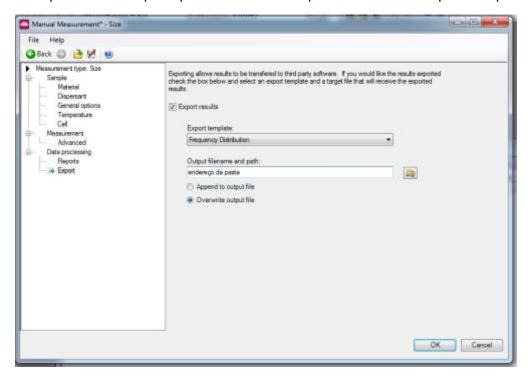
Atenção: A aparência desta janela pode mudar dependendo do tipo de medida (tamanho ou potencial zeta). No entanto, o princípio é o mesmo, selecionar a cubeta que será utilizada no experimento.

VIII. Em *Measurement* modifique os parâmetros de medida. Para uma primeira análise, onde não se conhece muitas características da amostra, recomenda-se iniciar com uma medida contendo 10 corridas de 10 segundos cada. Altere esses valores à medida que for obtendo mais informações sobre sua amostra.

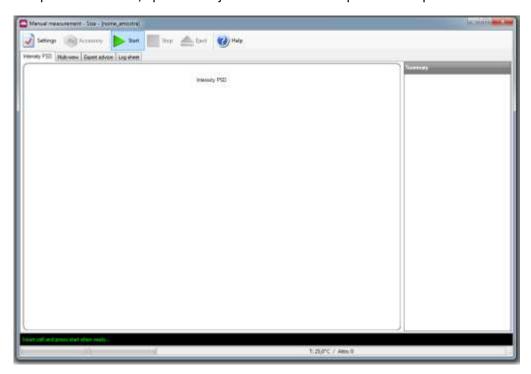
Atenção: A aparência desta janela pode mudar dependendo do tipo de medida (tamanho ou potencial zeta). No entanto, os valores usuais são os mesmos.

Código:	Data de aprovação:	Revisão:	Página 9 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 9 de 13

Análises de tamanho e potencial zeta — Zetasizer Nano ZS90


LAMATE

Proposto por: Francisco L. S. Bustamante


Analisado por:

Aprovado por: Célia M. Ronconi

IX. Selecione *Export* para criar um arquivo que receberá as informações de sua medida em formato que poderá ser importado posteriormente em softwares como Excel e Origin. Clique no ícone de pasta para selecionar a sua pasta e dar um nome para o arquivo.

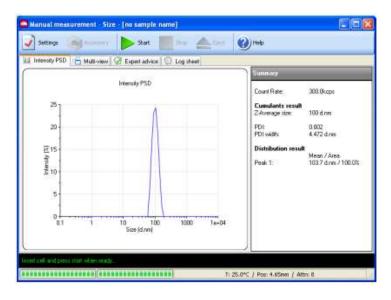
X. Após clicar em OK, aparecerá a janela de medida. Clique em Start para iniciar a medida.

Código:	Data de aprovação:	Revisão:	Página 10 de 13
POP-LAMATE-003	04/11/2014	0	Pagilla 10 de 15

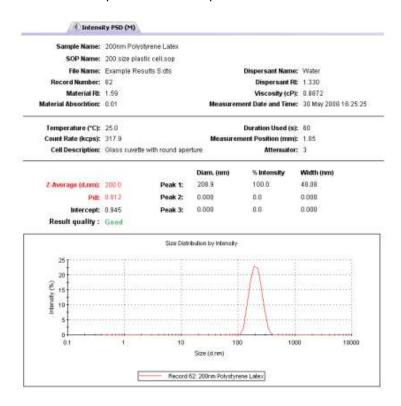
Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE

Proposto por:


Analisado por:

Aprovado por:


Francisco L. S. Bustamante

Célia M. Ronconi

XI. Após cada corrida, o gráfico na tela será atualizado.

XII. Após o término, volte para a janela do arquivo de medidas. Clique sobre o nome de sua amostra. Diversas abas aparecerão no topo da janela. Selecione a que contém as informações que deseja visualizar. Verifique o status do item *Result Quality*. Caso não tenha como resultado *Good*, siga as instruções que aparecem na tela para visualizar as sugestões do software para melhorar a qualidade de sua análise.

Código:	Data de aprovação:	Revisão:	Página 11 de 13
POP-LAMATE-003	04/11/2014	0	ragilla 11 de 15

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE

Proposto por: Francisco L. S. Bustamante

Analisado por: Aprovado por:

Célia M. Ronconi

5.5. Medidas utilizando SOP (Standard Operating Procedure)

Nesse tipo de medida, os parâmetros ficam guardados em um arquivo previamente criado pelo usuário. Uma vez carregado o arquivo, a medida requer menos intervenção do usuário. É um tipo de medida útil para aqueles que já descobriram a condição ótima de análise para suas amostras, utilizando o tipo de medida anterior, e planejam analisar diversas amostras nas mesmas condições.

Consulte o capítulo 8 do manual do usuário do equipamento para detalhes sobre a criação e a utilização de SOPs.

5.6. Término da análise

Após o término da medida, retire a cubeta puxando-a lentamente para fora do compartimento de amostra. Descarte a solução em um rejeito apropriado. <u>O laboratório não fornece frascos de rejeito, leve seu frasco</u>. Lave a cubeta com água destilada em abundância. Seque-a bem por fora com um papel macio. Caso uma nova medida vá ser realizada em seguida, rinse a cubeta com a nova solução de medida algumas vezes para evitar efeitos de diluição.

Caso não vá realizar uma nova medida, feche o compartimento de amostra, certificando-se antes que o mesmo está limpo e seco. Feche o software do equipamento. Vá na pasta que indicou em *Export* para copiar os arquivos gerados pelo software e que podem ser abertos em softwares como Excel e Origin para geração de gráficos. É aconselhável, por questões de segurança, ir até a pasta com a arquivo dos dados originais de suas medidas e copia-lo para que tenha um backup de suas medidas. Para isto, localize a pasta C:\Users\Usuario\Documents\Malvern Instruments\Zetasizer\Measurement Data, abra sua pasta e copie o arquivo. **Não delete nem recorte o arquivo, apenas faça uma cópia.** As cópias podem ser retiradas do computador através de dispositivos USB ou de CD/DVD. O computador não possui acesso à internet para envio de e-mails.

Desligue o computador e o equipamento. Desligue o estabilizador e retire sua tomada da parede, deixando o adaptador conectado à tomada do estabilizador. Registre o uso do equipamento no caderno de controle ao lado do mesmo. Limpe a bancada tomando cuidado de guardar o material adequadamente e não danificar a bancada nem os equipamentos vizinhos com água ou solvente. Encubra o equipamento, o monitor e o conjunto teclado/mouse com o plástico bolha de proteção.

6. ANEXOS

Anexo 01 – Especificações da unidade ótica

Código:	Data de aprovação:	Revisão:	Página 12 de 13
POP-LAMATE-003	04/11/2014	0	ragilla 12 de 15

Análises de tamanho e potencial zeta – Zetasizer Nano ZS90

LAMATE

Proposto por:Analisado por:Aprovado por:Francisco L. S. BustamanteCélia M. Ronconi

7. HISTÓRICO DE REVISÕES

7.1. Primeira edição / versão 0

ANEXOS

Anexo 01 – Especificações da unidade ótica

Tabela 4 Especificações de cada tipo de medida

Tipo de medida	Parâmetro	Especificação	
Tamanho	Faixa (diâmetro)	0,3 nm – 5 μm	
	Volume mínimo da amostra	20 uL	
	Concentração mínima (proteína)	10 mg/mL proteína de 15 kDa	
	Ângulo de medida	13° e 90°	
	Técnica de medida	DLS	
Potencial zeta	Sensitividade	10 mg/mL proteína 66 kDa	
	Faixa potencial zeta	> +/- 500 mV	
	Faixa mobilidade	> +/- 20 μ.cm/V.s	
	Concentração máxima	40 % m/v	
	Volume mínimo da amostra	20 μL (com barreira de difusão)	
	Condutividade máxima da amostra	200 mS/cm	
	Exatidão da condutividade	+/- 10 %	
	Técnica de medida	M3 – PALS	
Massa molar	Faixa (estimada por DLS)	1000 Da a 2 x 10 ⁷ Da	
	Faixa (calculada por plot de Debye)	10000 Da a 2 x 10 ⁷ Da	
	Técnica de medida	Espalhamento estático da luz	

Tabela 5 Especificações do laser

Classe do laser (produto)	Classe 1	
Classe do laser (quando aberto)	Classe 3R	
Atenuação do laser	Automática, transmissão de 100 % a 0,0003 %	
Tipo do laser	Laser de gás He-Ne	
Potência máxima	4 mW	
Diâmetro do feixe	0,63 mm (1/e ²)	
Divergência do feixe	1,5 mrad	
Comprimento de onda do feixe	632,8 nm	
Detector	Fotodiodo Avalanche, Q.E. > 50 % em 633 nm	
Controle de condensação Dispositivo de purga utilizando ar seco		

Código:	Data de aprovação:	Revisão:	Página 13 de 13
POP-LAMATE-003	04/11/2014	0	ragilla 15 de 15